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Abstract—Vision Transformers (ViTs) have emerged as a state-
of-the-art solution for object classification tasks. However, their
computational demands and high parameter count make them
unsuitable for real-time inference, prompting the need for effi-
cient hardware implementations. Existing hardware accelerators
for ViTs suffer from frequent off-chip memory access, restricting
the achievable throughput by memory bandwidth. In devices with
a high compute-to-communication ratio (e.g., edge FPGAs with
limited bandwidth), off-chip memory access imposes a severe
bottleneck on overall throughput. This work proposes ME-ViT,
a novel Memory Efficient FPGA accelerator for ViT inference
that minimizes memory traffic. We propose a single-load policy
in designing ME-ViT: model parameters are only loaded once,
intermediate results are stored on-chip, and all operations are
implemented in a single processing element. To achieve this goal,
we design a memory-efficient processing element (ME-PE), which
processes multiple key operations of ViT inference on the same
architecture through the reuse of multi-purpose buffers. We also
integrate the Softmax and LayerNorm functions into the ME-PE,
minimizing stalls between matrix multiplications. We evaluate
ME-ViT on systolic array sizes of 32 and 16, achieving up to a
9.22× and 17.89× overall improvement in memory bandwidth,
and a 2.16× improvement in throughput per DSP for both
designs over state-of-the-art ViT accelerators on FPGA. ME-
ViT achieves a power efficiency improvement of up to 4.00×
(1.03×) over a GPU (FPGA) baseline. ME-ViT enables up to
5 ME-PE instantiations on a Xilinx Alveo U200, achieving a
5.10× improvement in throughput over the state-of-the art FPGA
baseline, and a 5.85× (1.51×) improvement in power efficiency
over the GPU (FPGA) baseline.

Index Terms—Vision Transformer, FPGA Accelerator, Mem-
ory Bandwidth

I. INTRODUCTION

The self-attention based model of the Transformer [1] has
led to significant advancements in machine learning, impacting
a diverse range of applications [2]–[6]. Originally gaining
prominence due to its remarkable success in natural language
processing [7], the Transformer has been adapted to the
domain of computer vision via Vision Transformers (ViTs) [8],
achieving superior performance over convolutional networks
[9], [10]. Despite the substantial achievements of ViTs, their
implementation on real-time image data poses considerable
computational and memory challenges due to the immense
parameter counts associated with these models [11].

Significant effort has been put into accelerating the inference
of ViTs, including model size reduction [12], [13], weight
quantization [14], and algorithm optimization [15]. However,

Fig. 1: Roofline model of state-of-the-art (SOTA) architectures
and ME-ViT for various models. Vertical axis is in log scale.
ME-ViT optimizes memory bandwidth, enabling nearly peak
performance in GOPS (Giga Operations per Second). SOTA
implementations are bottlenecked by memory bandwidth. Four
ViT variants are shown: ViT-Base model from [8] (ViT-B), and
three models from [10] (DeiT-B, DeiT-S, and DeiT-T).

these methods do not directly address the main performance
bottleneck of ViT inference on modern hardware: memory
bandwidth. Computing capabilities of hardware such as GPUs
and TPUs have outpaced memory bandwidth improvements,
resulting in a poor Compute-to-Communication (C2C) ratio
and limited model performance [16], [17]. Various works
[18]–[20] have focused on algorithmic approaches to reducing
memory bandwidth, but are still constrained from the overall
architectural limitations imposed by the GPU.

Field Programmable Gate Arrays (FPGAs) provide a good
platform for ViT acceleration due to the high computa-
tional parallelism and custom architectures that can be de-
signed [21]–[23]. However, like GPUs, the high memory
bandwidth needs of Transformers significantly limits their
implementation on FPGAs. As shown in Figure 1, ViT and
DeiT (a commly-used variant of ViT) [10] models are severely
bottlenecked by memory bandwidth without specialized opti-
mization. The shortcomings of modern computing devices for
memory-bound computing tasks such as ViT inference prompt
the need for efficient and model-specific architectures suited
for these tasks. Custom FPGA architectures can meet the
computational and memory demands of ViT inference more



effectively than the general-purpose architecture of a GPU,
while also consuming less power.

In this work, we aim to minimize the memory bandwidth
for ViT inference on an FPGA. The development of such an
optimization presents multiple unique challenges. 1) Avoiding
write-backs and reloads in block matrix multiplications.
The large matrix multiplications present in ViTs require a
block matrix multiplication (BMM) approach, which divides
the large matrices into smaller blocks to meet the limited
resources of an FPGA. This results in constant block write-
backs and reads to off-chip memory, leading to high usage of
memory bandwidth. To minimize the memory traffic, buffering
all data on the FPGA is ideal. However, excessively large
buffers can hinder effective utilization of available DSPs [24].
This is because too much buffering per systolic array will
exhaust BRAM before all DSPs can be utilized. Thus, it
is crucial to strategically reuse on-chip buffers, achieving a
balance between minimal memory traffic and optimal FPGA
DSP utilization. 2) Buffering intermediate results for the
residual connections in ViT. The residual connections add
the values from the previous layer to the computed result of
the current layer, which necessitates either the buffering or
loading of a previous layer [25]. Buffering a layer uses more
FPGA resources but reduces the memory traffic that comes
with layer loading. Therefore, to minimize memory traffic and
to efficiently handle these residual connections, the design
of reusable buffers becomes a crucial aspect of the overall
system architecture. 3) Reducing communications between
FPGA accelerator and the host CPU. Often, Softmax and
LayerNorm operations in all layers of a ViT are performed
on the host CPU, with only the matrix multiplications being
offloaded to the accelerator. This is due to the computational
insignificance of Softmax and LayerNorm compared to matrix
multiplication [23] [22]. However, this causes frequent write-
backs multiple times per layer, as well as a significant delay
for the round trip to the CPU. Constant data transfer becomes
a significant performance bottleneck, especially for larger
FPGAs with higher processing capabilities.

We propose ME-ViT, a novel Memory-Efficient ViT ac-
celerator on FPGA that addresses the above challenges. As
shown in Figure 1, ME-ViT optimizes memory bandwidth
and enables nearly peak performance for ViTs. ME-ViT is
developed through two key optimizations. 1) A Single-load
policy for model parameters loaded from off-chip memory. 2)
Multi-purpose buffers for three key operations in ViT.

We propose a single-load policy as the key approach for
minimizing memory traffic for ViT accelerators. It consists of
three objectives. First, parameters loaded to the FPGA are only
loaded once from off-chip memory (e.g., DRAM). If the value
needs to be reused it is strategically buffered in the FPGA’s on-
chip memory (e.g., BRAM). Second, intermediate data is not
written back to off-chip memory between layers. This ensures
that the absolute minimum number of memory transfers are
used per inference. Third, all operations—including BMM,
LayerNorm, Softmax, and activations—are performed within
a single processing element to eliminate external data traffic.

The single-load policy is different than a block matrix multi-
plication approach which still requires reloading of the same
weights between different blocks.

Multi-purpose buffers are designed to achieve the goals
of the single-load policy while addressing its requirement of
large BRAM allocations. To minimize resource usage, we
design ME-PE, a single Memory Efficient Processing Element
that executes the three key operations in ViT inference:
Linear Projection (LP), Multi-headed Self-Attention (MSA),
and Multi-Layer Perceptron (MLP). By designing a custom
PE that conforms specifically to the MSA operations, we
can strategically order the computations to obtain a minimal
resource utilization. The minimal architecture needed for MSA
can be repurposed for MLP calculation without requiring
additional BRAM resources. BRAM is efficiently packed and
repurposed for different stages of calculation. As a result, we
are able to design a flexible PE that performs all operations
for ViT inference while using minimal BRAM to ensure
model parameters are only loaded once and all intermediate
data write-back is avoided. Meanwhile, the reuse of resources
within our design enables the implementation of multiple ME-
PEs in an FPGA, further improving the throughput of ME-ViT.

Our main contributions are summarized as follows:

• We propose ME-ViT, a novel memory-efficient Vi-
sion Transformer accelerator on FPGA, which optimizes
memory bandwidth and achieves nearly peak perfor-
mance in operations per second.

• We propose a single-load policy as the core principle
for minimizing memory access by only loading data
once from DRAM, buffering intermediate results, and
implementing all operations in a single PE.

• We design an ME-PE, a memory-efficient processing
element with reusable multi-purpose buffers. This novel
PE enables three key operations of ViT inference to be
processed on the same architecture, minimizing resource
usage and retaining intermediate data between operations.

• We integrate LayerNorm and Pseudo-Softmax (a
hardware-optimized Softmax) in the ME-PE to avoid off-
chip computation and reduce data traffic. These functions
are pipelined with matrix multiplication to reduce com-
putational stalls.

• We evaluate ME-ViT on a Xilinx Alveo U200. Using
systolic array sizes of 32 and 16, ME-ViT achieves up
to a 9.22× and 17.89× overall improvement in memory
bandwidth, and up to a 2.16× improvement in throughput
per DSP over state-of-the-art ViT accelerators on FPGA.
ME-ViT achieves up to 4.00× (1.03×) power efficiency
over the GPU (FPGA) baseline. The ME-ViT with 5 ME-
PEs implemented on board achieves a 5.1× improvement
in throughput over the state-of-the-art FPGA baseline,
and a 5.85× (1.51×) improvement in power efficiency
over the GPU (FPGA) baseline.

To the best of our knowledge, ME-ViT is the first Vision
Transformer architecture that optimizes memory traffic and
strictly enforces a minimal memory access policy.
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Fig. 2: Vision Transformer architecture.

II. BACKGROUND

A. Vision Transformer

Vision Transformer (ViT) is a state-of-the-art deep learning
architecture that utilizes the Transformer model for computer
vision tasks. By leveraging self-attention mechanisms, ViTs
have achieved significant advancements in image classification
and object detection, revolutionizing the field of visual recog-
nition. The ViT architecture is shown in Figure 2. The input
image is broken up into patches and fed into the Transformer
Encoder as a sequence. The Transformer Encoder is mainly
composed of a multi-headed self-attention block (MSA), a
multi-layer perceptron block (MLP), and layer normalization
blocks (LN).
Multi-Headed Self-Attention. Self-attention takes the embed-
ding of items as input, converts them to three matrices through
linear projection, then feeds them into a scaled dot-product
attention. The self-attention function is defined as:

Attention(Q,K, V ) = softmax

(
QK⊤
√
Dk

)
V (1)

where Q is queries, K is keys, V is values, D is the model
dimension, and Dk is the dimension of K. Considering one
self-attention operation as one ”head,” Multi-headed Self-
Attention (MSA) operation is shown as:

MSA(Q,K, V ) = Concat (head1, . . . , headh)WO

headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

) (2)

where the projection matrices WQ
i ,W

K
i ,W

V
i ∈ RD×Dh , h is

the total number of heads, i is the index of heads, and
Dh = D/h is the dimension of each head.
Multi-Layer Perceptron. The MLP block consists of two
linear layers with an activation function:

MLP(x) = GeLU(xWH +BH)WO +BO (3)

where WH is the hidden layer weights, BH is the hidden layer
bias, WO is the output layer weights, and BO is the output
layer bias, GeLU is an activation function [26].
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Fig. 3: Systolic array architecture of size 4×4. Dark gray boxes
indicate DSPs, each split by a dashed line to illustrate DSP
packing.

Transformer Encoder. For the input image x ∈ RH×W×C,
the formal expression of transformer encoder layers are shown
in Equation 4.

z0 =
[
xclass;x

1
pE;x2

pE; · · · ;xN
p E

]
+Epos

z′ℓ = MSA(LN (zℓ−1)) + zℓ−1

zℓ = MLP (LN (z′ℓ)) + z′ℓ

y = LN(zL)

(4)

where xclass is a class token, xp ∈ RN×(P2×C) is the image
segmented to N patches, E ∈ R(P

2·C)×D is the input embed-
ding, Epos ∈ R(N+1)×D is the position embedding, ℓ = 1 . . .L
is the index of layers.

In this work, we design a ViT accelerator by implementing
the above functions on FPGA and optimizing the memory
accesses in model inference.

B. ViT Accelerators on FPGA

Field Programmable Gate Arrays (FPGAs) have been ex-
tensively used for accelerating machine learning tasks [27]
[28]. FPGAs consist of a programmable interconnect of logic
gates and on-chip memories (BRAMs, URAMs, LUTRAMs),
allowing custom hardware architectures to be designed. This
flexibility enables hardware optimizations to meet the specific
requirements of various machine learning tasks.

There have been several proposed architectures for accel-
erating ViT and, more generally, Transformer inference on
FPGAs [23], [25], [29], [30]. These architectures typically
quantize weights and activations to 8 bits to reduce model size
and computation requirements [22], [23]. Some architectures
compute Softmax and LayerNorm on the FPGA [25], [30],
while others perform this on the host CPU [23]. Computing
these functions on the CPU reduces the complexity of the
FPGA design, but increases the memory overhead. Wang et
al. [25] propose ViA, a ViT accelerator which performs the
full calculation per layer on an FPGA but requires write-
backs between layers and does not implement the full-size
ViT models. Nag et al. [30] target an edge FPGA device and
also incur frequent memory reads and write-backs between
layers. Sun et al. [23] propose an accelerator design that
requires the CPU to perform the Softmax and LayerNorm
functions and also necessitates loading and unloading for each
matrix multiplication. Lu et al. [29] propose an accelerator
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Fig. 4: MLP matrix multiplication and partial sum method.

for the MSA and MLP layers of a Transformer with on-chip
computation of Softmax and LayerNorm, but require memory
access between matrix multiplications.

All of the above model architectures write back intermediate
layer calculations and frequently load weights for matrix
multiplication, which incur a large memory overhead [23],
[25], [29], [30]. As these architectures scale to larger sizes,
they become limited by memory bandwidth constraints. ME-
ViT aims to address these memory constraints by eliminating
intermediate write backs between layers and only loading
weights once into the design, ensuring the minimal amount
of data is transferred. This policy enables our design to easily
scale without being constrained by memory limitations.

C. Matrix Multiplication on FPGA

1) DSP Packing: DSP packing is utilized to perform two
simultaneous multiplies per DSP as described in [31]. Each
DSP contains an 18-bit × 27-bit multiplier, which can be used
to perform A× B and A× C simultaneously by assigning
A to the 18-bit operand, and (B << 18 + C) to the 27-bit
operand. The resulting multiply leaves the two distinct 16-
bit products separated in the 45-bit DSP output. A systolic
array of size PSYS × PSYS shown in Figure 3 is used to
efficiently multiply matrices. With DSP packing, the systolic
array can perform PSYS × (2 · PSYS) multiplies. Datapaths in
Figures 8, 10, and 11 with double-arrows indicate the double-
wide data paths, which are necessary for accommodating the
combined bit width of the two separate products.

2) Matrix Multiplication for MLP: The MLP calculation
involves multiplication with weight matrices WH and WO,
which are too large to be buffered or computed fully within the
PE. Matrix multiplication is split into row blocks and column
blocks, where Ai refers to the ith row or column block of
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Fig. 5: Overview of the ME-PE architecture.
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Fig. 6: Scheduling of ME-PE modes across Transformer
encoder for ME-ViT inference.

matrix A. A sub-block Bi,j refers to the matrix block at the
ith row block and jth column block of matrix B.

To perform the calculation without reloading weights, we
implement the MLP method from [30] shown in Figure 4. A
single sub-block of the intermediate result is calculated, which
then is passed point-wise through an activation function. The
result Mi,j is multiplied by each sub-block in WO. The result
of each block multiplication is added to the previous value in
the staged result. At the start of the cycle, the staged result
contains the output layer bias, which handles bias addition
implicitly. This performs the partial sum method shown in
Figure 4b, which allows the M row block and WO column
block product to be broken up into separate iterations. For
each iteration in Figure 4a, a column block from WH and
a row block from WO is loaded. This approach allows the
weights in the MLP layer to be fully used from a single load
without requiring larger buffer sizes.

III. APPROACH

We introduce ME-ViT, a novel memory-efficient FPGA
accelerator for Vision Transformers. ME-ViT minimizes mem-
ory traffic, which is accomplished through a versatile archi-
tecture of a memory-efficient processing element (ME-PE,
Section III-A), the scheduling of ME-PE modes for the key op-
erations in a Transformer Encoder (LP mode in Section III-B,
MSA mode in Section III-C, and MLP mode in Section III-D),
and the integration of LayerNorm and Softmax operations
(Section III-E). Due to the high reuse of resources, we design
an ME-ViT architecture with multiple ME-PEs working in
parallel (Section III-F) that highly improves the throughput
of ViT inference.
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A. Architecture of Memory-Efficient Processing Element

The Memory-Efficient Processing Element (ME-PE) is de-
signed such that distinct input parameters such as weights
and biases are only loaded once into the design from off-chip
memory (e.g., DRAM). In addition, there is no unloading of
any intermediate values. These two objectives of the ME-PE
ensure that the minimal amount of memory traffic is incurred.
A final objective of this design is to minimize the number of
computation stalls for internal data movement within the PE.
The hardware architecture of the ME-PE is shown in Figure 5,
centered around a systolic array with multi-purpose buffers to
manage data around it.

There are 3 modes of operation for the ME-PE shown in
Figure 6: 1) Linear Projection (LP) Mode; 2) Multi-headed
Self-Attention (MSA) Mode; and 3) Multi-Layer Perceptron
(MLP) Mode. Each ME-PE handles all modes on the same
architecture with only one extra buffer created to handle MLP
Mode (see Section III-D). Since each ME-PE performs all
calculations needed for ViT inference, individual layer calcu-
lations do not need to be written back to memory. In addition,
the residual layer connections present in the Transformer
architecture are retained within the PE and similarly do not
require additional memory access.

The ME-PE consists of 3 BRAM buffers and 6 LUTRAM
buffers. The Weight Buffer stores a maximum matrix size

of D×D bytes, and the Feature and Layer Buffers store a
maximum matrix of size of (N + 1)×D bytes. For the base
ViT model, D = 768 and N = 256. The Weight Buffer, Layer
Buffer, and Feature Buffer are implemented in BRAM and
use 160, 64, and 64 36k BRAMs respectively, for a total of
288 BRAMs. While smaller BRAM allocations could store the
required data, a multiple of PSYS must be used to meet the
parallel access needs of the systolic array.

The Q, K, V, Result, and two S Buffers are implemented
in LUTRAM due to their small size and parallel data access.
The sizes of these buffers are PSYS ×Dh, D×Dh, D×Dh,
PSYS × (2 · PSYS), and PSYS ×D respectively. Most buffers
are multi-purpose, and the names suggest the general use case.

B. Linear Projection Mode

The Linear Projection (LP) Mode performs BMM to com-
pute Feature Buffer × Weight Buffer as shown in Fig 8. This
operation is needed for the linear projection of input features
and to compute the output linear layer in MSA. In addition
to performing matrix multiplication, LP Mode performs the
residual connection addition and LayerNorm. The LayerNorm
result is stored in the Layer Buffer to be used as an input for
the next MSA or MLP block. Since the residual sum is also
used as an input to the next block, this sum is stored in the
Feature Buffer.

LP Mode places a minimum requirement for BRAM usage
to store both the layer matrix (L) and the weight matrix
(W) since these weights are repeatedly accessed during linear
projection. A matrix multiplication of the same size occurs in
the output linear projection of the MSA block, so this mode
is reused at that step.

Figure 7 illustrates the task scheduling for this mode. At
timestamp 1, the block matrix multiplications L1 ×W1 and
L1 ×W2 are concurrently performed and stored in the Result
Buffer. At timestamp 2, the Result Buffer values are added
to the residual connection values from the Layer Buffer and
stored in the S Buffer. Meanwhile, the next pair of block
matrix multiplications are performed. Timestamp 3 calculates
the sum and squared sum from the new values in the S Buffer
to be later used for LayerNorm. At timestamp 4, the cycle
repeats with the next row block from the Feature Buffer.
At timestamp 5, the mean and variance are calculated from
the sums stored in LN Sum. At timestamp 6, LayerNorm is
calculated (see Section III-E1) and the results are stored in
the Layer Buffer. The un-normalized values are moved to the
Feature Buffer and will be used later for residual connection.



Residual Buffer
FP Sum

FP Reciprocal
Softmax Buffer

Q Buffer L1W"
#

1

Residual Store Row 1

L1W!" LnW!"

L1W!# LnW!#

Residual Buffer

Q1K1	&	Q1K2
L2W"

#2

Residual Store Row 2 6

L1W%
#

Residual Load Row 1

Q1Kn

Softmax	× V

5

Q2K1	&	Q2K2 Q2Kn
L3W"

#

Residual Store Row 3

V Buffer
K Buffer

Score Buffer

Result Buffer
Layer Buffer

Q Buffer

3

4

Fig. 9: Scheduling for MSA Mode. Top half shows the V and K buffer initialization before the main operation.

Fig. 10: MSA process on the ME-VIT architecture.

C. Multi-Headed Self-Attention Mode

The Multi-Headed Self-Attention (MSA) Mode performs
the MSA operation for a single head at a time on the ME-PE
architecture shown in Figure 10. At the start of operation, the
Layer Buffer contains the LayerNorm result calculated from
either the previous LP or MLP operation. The Feature Buffer
contains the previous layer result before layer normalization to
be used later for the residual connection. Task scheduling of
this mode is shown in Figure 9. At the start of operation, the
Vi and Ki matrices are calculated and stored in the respective
buffers. The weight matrices WV

i , WK
i , and WQ

i are loaded
during the first few block matrix multiplication iterations
during the Vi calculation. At timestamp 1, the residual data
stored in the Feature Buffer is moved to empty space in
the Weight Buffer so the head outputs can be stored in
the Feature Buffer. Simultaneously, the first block row of Q
for head 1 is calculated by L1 ×WQ

1 and stored in the Q
Buffer. At timestamp 2, the Q Buffer is multiplied by two
block columns from the K Buffer until the full row of the
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S Buffer is calculated. At timestamp 3, the next row block
of Q is calculated, the next residual row is stored, and the FP
reciprocal is calculated. At timestamp 4, Softmax is calculated
(see Section III-E2). The cycle repeats until the last head,
where timestamp 5 shows how the residual data is moved
to the Layer Buffer as the previously stored data there is
no longer needed. This leaves the ME-PE with the output
attention matrices stored in the Feature Buffer and residual
connection data in the Layer Buffer at the end of the operation.

D. Multi-Layer Perceptron Mode

The Multi-Layer Perceptron (MLP) Mode performs the
MLP operation on the ME-PE shown in Figure 11. Like
with MSA Mode, the Layer Buffer contains the previously
calculated LayerNorm, and the Feature Buffer contains the
non-normalized values. The operation scheduling in MLP
Mode is shown in Figure 12. At timestamp 1, column blocks
WH

1 and WH
2 are loaded into the Weight Buffer and row blocks

BH
1 and BH

2 are loaded into the Feature Buffer. At timestamp
2, the block matrix multiplications L1 ×WH

1 and L2 ×WH
1



Residual Buffer

Result Buffer
V Buffer
K Buffer

Weight Buffer

S1 Buffer

S2 Buffer

Feature Buffer

Load B!"	&	B#"

Load W!$ & W#$

Stage B!$

Stage B#$

Layer Buffer

Q Buffer + B!,!"
+ B#,!"

Load B&$	& B'$

M1,1W!,!$

M1,1W!,#$
M1,1W!,&$

M1,1W!,'$
M2,1W!,!$

M2,1W#,!$
M2,1W!,&$

M2,1W#,'$

+ B!,!$
+ B!,#$

+ B!,()!$

+ B!,!$
+ B#,!$
+ B#,#$

Store S1 &	Stage B&$6

L3W!"& L4W!" L1W*"& L2W*"L1W#"& L2W#"

+ B#,()!$

+ B#,($

L1W!"& L2W!"

Res. Load Row 1 & 2

Load W&"

Load W&$

Load W!" & W#"

Load B!$	& B#$

Res. Store Row 1 & 2

Load B&"	&	B'"

Res. Store Row 3 & 4 Res. Store Row 5 & 6

M2,1W!,+)!$

M2,1W#,+$

+ B#,()&$

+ B#,()#$

1

2

3

4 5

7

Store S2 &	Stage B'$8

9

Fig. 12: Scheduling for MLP Mode.

SoftMaxSoftMaxSoftMax!"#	%&'((")
!"#(",%)

1 !"#	*'+⁄ (")

-'.&+/"+0(",%)

1(%) 2(%) 3

(a) LayerNorm Module

SoftMaxSoftMax
!"	$%&(")

!"	'()*+.(")

SoftMax

$)-.(	'-/(",%)
127

[30: 23]
-

1
+

{1, [22: 0]} >>
[22: 15] $-<=&>?(",%)

*

(b) Pseudo-Softmax Module

Fig. 13: Design of LayerNorm and Pseudo-Softmax Modules.

are concurrently performed and stored in the Result Buffer.
The column blocks BH

1 and BH
2 are loaded to the V Buffer

and row blocks BH
1 and BH

2 are loaded into the K buffer. The
row blocks BH

1 and BH
2 are staged by being moved to the S

Buffer for future addition. At timestamp 3, the row blocks
BH

1 and BH
2 are added to the two blocks stored in the Result

Buffer. Instead of GeLU, the ReLU activation function is used
for hardware simplicity. Various hardware approximations of
GeLU exist and would not affect the scheduling or timing
of this design. The activation function results are stored in
the Q buffer. This timestamp results in a stall of the systolic
array, however it is unavoidable since the result is needed
immediately for the next multiply. This only incurs a delay
of PSYS clocks which is insignificant. The next pair of output
biases are also loaded. At timestamp 4, the first two output
layer block multiplications are computed. At timestamp 5, the
results computed in timestamp 4 are added to the staged values
in the S1 buffer, and the next two output layer blocks are
calculated. This process repeats until all sub-blocks involving
M1,1 are calculated. At timestamp 6, the S1 buffer containing
the staged values is stored back into the Feature Buffer, and
multiplication repeats with M2,1. At timestamp 7, the next pair
of Layer Buffer row blocks is processed. This continues until

all row blocks in the Layer Buffer have been multiplied by
WH

1 . After all layer row blocks have been processed, the cycle
repeats with the next WH column block. At timestamp 8, S2 is
stored and the next row block from the Feature Buffer is loaded
to S2. On the last cycle in timestamp 9, the residual data stored
in the Weight Buffer is transferred back to the Layer Buffer,
replacing the existing values as they are no longer needed.

Two separate S Buffers are needed to reduce stalls for
matrix multiplication. After one S buffer is filled it gets
written back to Feature Buffer BRAM. While this takes
place, the second S buffer gets written to. Otherwise, matrix
multiplication would need to be stalled while the S buffer
gets unloaded and reloaded with new values. This adds an
additional resource overhead to MLP Mode that is not present
for other modes. However, since the S buffer is relatively small
and implemented in LUTRAM, this incurs minimal penalty.

E. Integrating LayerNorm and Pseudo-Softmax

1) LayerNorm Module: We implement LayerNorm in the
ME-PE using a two-pass approach that is performed in parallel
with matrix multiplication. LayerNorm is calculated in both
the MSA and MLP blocks with:

LayerNormi,j =
Xi,j − µi√

σ2
i + ϵ

· γj + βj (5)

With the mean and variance per ith row of matrix X as:

µi =
1

n

n∑
j=1

Xi,j (6)

σ2
i =

1

n

n∑
j=1

(Xi,j − µi)
2 (7)

The mean and variance can be calculated in parallel using the
variance form:

σ2
i =

1

n

n∑
j=1

X2
i,j − (

1

n

n∑
j=1

Xi,j)
2 (8)

This reduces the full LayerNorm calculation to two passes;
The first pass accumulates a sum and squared sum of each
row i. After the row sums are calculated, the RowMeani
and 1/

√
RowVari are calculated using fixed-point arithmetic



FP
G

A 
D

D
R

 
M

em
or

y

ME-PE

FPGA Shell

ME-PE ME-PEME-PE

FPGA Shell FPGA Shell

ME-PE

Alveo U200
SLR 0 SLR 1 SLR 2

Scheduler

Fig. 14: Multi-PE ME-ViT architecture on the Alveo U200.

functions. These constants are fed into the LayerNorm Module
shown in Figure 13a. By passing each row element j through
the LayerNorm Module in a pipelined manner, the final layer-
normalized value is efficiently computed.

2) Pseudo-Softmax Module: We implement the Pseudo-
Softmax function, a hardware-friendly alternative to the Soft-
max function proposed in [32]. We utilize a two-pass approach
for computation which is parallelized with matrix multiplica-
tion. The Pseudo-Softmax uses base 2 instead of e to leverage
floating point number properties to evaluate exponentiation.

p̃i =
2xi∑N

k=1 2
xk

(9)

Let ai be a floating-point number with exponent xi. This
removes the need to calculate exponentiation in hardware since
it is implicitly handled by the float representation.

p̃i =
ai∑N

k=1 ak
(10)

The summation term can be expressed as a single floating point
number. In this representation, expsum and mantsum denote the
exponent and mantissa of the resulting number.

N∑
k=1

ak = 2expsum · mantsum (11)

The Pseudo-Softmax p̃i for element xi, is calculated as:

p̃i = 2xi−expsum · 1

1 · mantsum
. (12)

This requires two passes over an input vector x. The
first pass is to calculate the values expsum and mantsum and
the second pass is to calculate p̃i. The reciprocal of the
sum mantissa is determined after the floating point sum is
computed. Since the Softmax value ranges from 0 to 1, the
final result will be the reciprocal bit-shifted by expsum−xi+1
as per Equation 12. 127 is added to the score row to convert
to a floating point exponent which is stored unsigned. A 1 is
prepended to the mantissa since it is implicitly present in the
floating point format. The result is stored in fixed-point format
with only fractional bits to maximize accuracy. The upper 8
bits after the bit-shift contain the fixed-point representation of
the Pseudo-Softmax function.

F. Multiple ME-PE Architecture for ME-ViT

A Multiple ME-PE architecture (Multi-PE) is proposed that
contains parallel instantiations of the ME-PE along with a
scheduler to coordinate data traffic between them. The Alveo

U200 contains 3 Super Logic Regions (SLRs), with SLRs 0
and 2 having 2275 DSPs each and SLR 1 only having 1317.
With a PSYS = 32, up to 5 PEs can fit as shown in Figure 14.
A smaller PSYS can fit more SAs in the FPGA, however the
BRAM needed for such a design is the same as PSYS = 32
since buffering requirements are unchanged. Therefore, only
the PSYS = 32 design is implemented to maximally utilize
the available DSPs. Resource utilization is discussed in more
detail in Section IV-B. The Multi-PE architecture can achieve
remarkably higher throughput, but an increase in data traffic
causes a bottleneck due to the limited 77 GB/s bandwidth to
the FPGA DRAM. These results are discussed in Section IV-G.

IV. EVALUATION

A. Experimental Setup
We implement ME-ViT on the Xilinx Alveo U200 platform,

consisting of 5867 DSPs, 1766 36k BRAMs, 892K LUTs,
and 1831K FFs. It has 4 channels of DDR memory, and a
total bandwidth of 77 GB/s. Experimental results are evaluated
independently for each ME-ViT mode, and theoretical values
are presented which remove extra latencies added from Vitis
synthesis and Place and Route (P&R). All implementations
are designed for 300 MHz, and 150 MHz figures are provided
to compare with other designs. The ME-PE is designed
and evaluated using Vitis HLS 2023.1. Power estimates are
calculated using AMD Power Design Manager 2023.1.1.

A single ME-PE is analyzed on four common ViT model
sizes shown in Table I. ME-PEs with systolic array size
PSYS = 32 and PSYS = 16 are analyzed to provide insight
into the performance scalability across FPGAs of varying
DSP resources. As the size of the systolic array decreases,
there is a corresponding reduction in total FPS (frames per
second). Memory bandwidth also reduces despite smaller
systolic arrays requiring more frequent data transfers. This
relationship between scale and memory bandwidth is explored
in Section IV-E. Finally, Multi-PE results are calculated based
on single PSYS = 32 ME-PE performance to maximally utilize
the available DSPs.

TABLE I: Model Variants

Model Image
Size

Model
Dimension

Num
Heads

Layers Parameter
Count

ViT-B 2562 768 12 12 86M
DeiT-B 2242 768 12 12 86M
DeiT-S 2242 384 6 12 22M
DeiT-T 2242 192 3 12 6M

ViT variants shown in Table I are evaluated on the ME-ViT
architecture. ViT-B refers to the base ViT model presented in
[8] but with 256 input image resolution. DeiT-B, DeiT-S, and
DeiT-T refer to model sizes presented in [10], all on 224 input
image resolution. The key difference between DeiT models
lies in their respective model dimensions: 768, 384, and 192.

B. Results on Hardware
Results for hardware utilization are shown in Table II. The

three ME-ViT modes are implemented separately, and through-



put values in Table III are derived from the latency per mode.
Since each mode largely utilizes the same resources but with
different control logic, the unified design’s resources would
marginally exceed that of the largest mode (MLP Mode).
Resources are shown for the PSYS = 32 ME-PE for the ViT-B
model. Resource consumption is unchanged for DeiT-B, and
BRAM usage drops to 176 and 144 for DeiT-S and DeiT-T
respectively. For PSYS = 16, 256 DSPs are used, with other
values remaining the same as buffering requirements do not
change.

TABLE II: Hardware Resource Utilization

Hardware Configuration DSP BRAM36 LUT (K) FF (K)

LP Mode 1024 288 159 93
MSA Mode 1024 288 166 107
MLP Mode 1024 288 192 132

Auto Vit Acc [22] 2066 – 128 –

C. Performance Comparison

Performance comparison values for ME-ViT are shown in
Table III. Theoretical values are presented which are calculated
by leveraging extra parallelism which cannot be achieved
through Vitis HLS. These figures are achievable with Ver-
ilog synthesis. All synthesized designs achieve an operating
frequency of 300 MHz, however, competing solutions (Auto
Vit Acc [22] and ViTA [30]) are implemented at lower
frequencies. To accurately compare design metrics, 150 MHz
figures are provided.

We compare ME-ViT performance against four baseline
platforms: (1) CPU only platform (Intel i7-9800X), (2) high-
power GPU accelerated platform (Nvidia Titan RTX), (3) low-
power GPU accelerated platform (Nvidia Jetson TX2), (4)
FPGA ViT accelerator presented in Auto Vit Acc [22], and
(5) Edge FPGA ViT accelerator presented in ViTA [30].

A single ME-PE achieves a theoretical throughput of 26.4
FPS, a 1.04× improvement over the Auto Vit Acc implementa-
tion. Notably, Auto Vit Acc is implemented at 150 MHz which
outperforms a single ME-PE at the same clock frequency due
to higher DSP usage. The ME-PE has a similar FPS/DSP
efficiency as Auto ViT Acc at 150 MHz, and sees a 2.16×
improvement at 300 MHz. The ME-PE has a high power
efficiency of 2.83 FPS/Watt, outperforming all other platforms
except for ViTA. In comparison to a GPU with a similar power
usage (TX2), ME-ViT has a 4.42× improvement in FPS/Watt,
demonstrating the high efficiency of the custom architecture
approach.

D. Overall Throughput and Latency

Overall throughput measured in frames per second (FPS) for
the 4 models is shown in Table IV. FPS improves as model
sizes get smaller, and PSYS = 16 experiences roughly 0.25×
the throughput of corresponding PSYS = 32 designs. Latencies
per ME-ViT mode are presented in Figure 15. MLP Mode
exhibits the longest duration out of the three modes, taking
approximately 60 percent of execution time across all models.

Fig. 15: Breakdown of latency per mode for ME-ViT on
various models. Vitis implementation (HLS) introduces small
extra latency overhead to the theoretical performance.

Fig. 16: Breakdown of bandwidth per mode for ME-ViT on
various models, lower is better.

A reduction of input image size from 256 to 224 results in an
average 1.17× improvement for PSYS = 32 and an average
1.08× improvement for PSYS = 16. For both systolic array
sizes, a reduction of model dimension in half results in an
average improvement of 3.7×.

E. Memory Bandwidth Comparison

As there exist no published results on memory bandwidth
for similar FPGA architectures, a non optimized approach is
calculated with the following characteristics that are common
in various designs [21], [23], [30]: Each BMM loads two
input matrices. If an input block matrix was used for the
previous multiply, it remains loaded. 2) All calculated matrix
blocks are written back to DRAM. 3) Softmax and LayerNorm
[33] are calculated on the CPU and are implicitly included in
intermediate write-backs.

Figure 16 shows memory bandwidth figures for ME-ViT
on all four models for both PSYS = 32 and PSYS = 16. Total



TABLE III: Platform Performance Comparison

Platform
CPU i7-
9800X

[23]

GPU
Titan

RTX [23]

GPU
Jetson

TX2 [22]

Auto Vit
Acc [22]

ViTA
[30]

ME-ViT ME-ViT
Theoretical Multi-PE

150 MHz 300 MHz 150 MHz 300 MHz 150 MHz 300 MHz

Latency (ms) 65.35 5.45 127 38.61 363.64 83.38 41.69 75.73 37.86 75.73 37.86
FPS 15.3 183.4 7.87 25.9 2.75 11.99 23.98 13.20 26.40 66.02 132.04

Power (W) 100 260 12.28 9.4 0.88 6.5 9.3 6.5 9.3 17.8 31.8
FPS/Watt 0.15 0.71 0.64 2.76 3.13 1.84 2.57 2.03 2.83 3.71 4.15
FPS/DSP – – – 0.012 – 0.012 0.023 0.013 0.026 0.013 0.026

TABLE IV: Model Performance (FPS)

Model HLS
(PSYS=32)

Theoretical
(PSYS=32)

HLS
(PSYS=16)

Theoretical
(PSYS=16)

ViT-B 20.64 22.38 5.40 6.08
DeiT-B 23.98 26.40 5.81 6.64
DeiT-S 87.64 98.25 22.13 25.53
DeiT-T 298.52 352.27 78.55 94.13

TABLE V: Memory Bandwidth Improvement

Model Total
(PSYS=32)

Peak
(PSYS=32)

Total
(PSYS=16)

Peak
(PSYS=16)

ViT-B 9.22 13.07 17.14 25.58
DeiT-B 8.25 11.29 16.62 23.79
DeiT-S 7.06 14.60 17.53 27.60
DeiT-T 8.77 21.28 17.89 35.29

and peak bandwidth improvements are shown in Table V. Peak
improvement occurs in the MSA Mode as this has the most
back-and-forth traffic in the unoptimized case. Despite fewer
model parameters to transfer, a higher improvement is seen
on smaller models since less time is spent on computation
and therefore a larger proportion of data movement needs
to occur in the same time. There is an approximate 3.8×
reduction in latency between PSYS = 32 and PSYS = 16, but
an approximate 2× reduction in data transferred. This results
in a larger reduction in memory bandwidth for PSYS = 16.

F. Systolic Array Size Comparison

The systolic array has a large impact on the computational
efficiency, defined as the total computation performed divided
by the minimum computation required. Depending on how
PSYS divides both the model dimension and the layer height,
computational efficiency can greatly vary. When PSYS poorly
matches these dimensions, the BMMs at the right and bottom
boundaries fill only a small portion of the systolic array,
leading to wasted computation.

As shown in Figure 17, there are periodic cycles in effi-
ciency ranging from 0.95 to 0.5, with notable peaks occurring
at 11, 17, 33, 50, and 66. In addition, simply increasing PSYS

leads to an overall downward trend in efficiency. These results
underscore the importance of tuning hardware to fit the model
dimensions.

G. Multi-PE ME-ViT Performance

We analyze the performance of the Multi-PE to determine
the effectiveness of ME-ViT when scaled to larger FPGAs.

Fig. 17: Computational Efficiency vs. PSY S for all models.

Fig. 18: Throughput (left) and performance (right) comparison
between Multi-PE and the unoptimized design, higher is better.
Throughput vertical axis is in log scale.

Multi-PE performance results are shown in Figure 18. The
unoptimized design for ViT-B and DeiT-B can only support 3
ME-PEs before performance is limited by memory bandwidth.
For DeiT-S and DeiT-T, the unoptimized design can only
support 2 ME-PEs. ME-ViT allows 5 ME-PEs to be supported
for all models, resulting in a 1.66× improvement in both
FPS and GOPS (Giga Operations per Second) for ViT-B and
DeiT-B, and a 2.5× improvement for DeiT-S and DeiT-T.
The theoretical maximum GOPS for 5 ME-PEs is 3072, yet
a maximum of 2682 is achieved due to inefficiencies with
irregularly-sized matrix multiplication. Matrix blocks that do
not completely fill the systolic array result in unused DSPs,
leading to an overall reduction in GOPS.

For larger ViT models such as ViT-Large and ViT-Huge
(D = 1024 and 1280), total BRAM usage will increase to 384
and 608 respectively with Psys = 32. ME-PEs of this size can
still fit inside a large FPGA like the Alveo U200, but fewer
total will fit in the Multi-PE design. This results in a large
number of unused DSPs, reducing the total GOPs from the
theoretical maximum.



V. CONCLUSION

In this paper, we proposed ME-ViT, a novel ViT hardware
accelerator that mitigates the high-bandwidth needs of ViT
inference. ME-ViT minimizes the memory traffic for a ViT
accelerator on an FPGA through a single-load policy and
multi-purpose buffers within a memory-efficient processing
element (ME-PE). ME-ViT achieves up to a 17.89× overall
improvement in memory bandwidth, and up to a 2.16×
improvement in throughput per DSP over state-of-the-art ViT
accelerators on FPGA. ME-ViT enables implementation of up
to 5 ME-PEs on a Xilinx Alveo U200, achieving a 5.10×
improvement in throughput over the FPGA baseline. Future
research will focus on extending the ideas in this paper beyond
ViTs to Large Language Models which inhibit a single-load
policy due to limited on-chip memory.
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“Vivit: A video vision transformer,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp. 6836–6846.

[3] H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T. Freeman, “Maskgit:
Masked generative image transformer,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
11 315–11 325.

[4] D. A. Hudson and L. Zitnick, “Generative adversarial transformers,”
in International conference on machine learning. PMLR, 2021, pp.
4487–4499.

[5] P. Zhang, A. Srivastava, A. V. Nori, R. Kannan, and V. K. Prasanna,
“Fine-grained address segmentation for attention-based variable-degree
prefetching,” in Proceedings of the 19th ACM International Conference
on Computing Frontiers, 2022, pp. 103–112.

[6] P. Zhang, R. Kannan, X. Tong, A. V. Nori, and V. K. Prasanna, “Sharp:
Software hint-assisted memory access prediction for graph analytics,” in
2022 IEEE High Performance Extreme Computing Conference (HPEC),
2022, pp. 1–8.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[9] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 10 012–10 022.

[10] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning.
PMLR, 2021, pp. 10 347–10 357.

[11] Y. Li, G. Yuan, Y. Wen, J. Hu, G. Evangelidis, S. Tulyakov, Y. Wang, and
J. Ren, “Efficientformer: Vision transformers at mobilenet speed,” Ad-
vances in Neural Information Processing Systems, vol. 35, pp. 12 934–
12 949, 2022.

[12] S. Mehta and M. Rastegari, “Mobilevit: light-weight, general-
purpose, and mobile-friendly vision transformer,” arXiv preprint
arXiv:2110.02178, 2021.

[13] K. Wu, J. Zhang, H. Peng, M. Liu, B. Xiao, J. Fu, and L. Yuan, “Tinyvit:
Fast pretraining distillation for small vision transformers,” in European
Conference on Computer Vision. Springer, 2022, pp. 68–85.

[14] A. Bhandare, V. Sripathi, D. Karkada, V. Menon, S. Choi, K. Datta, and
V. Saletore, “Efficient 8-bit quantization of transformer neural machine
language translation model,” arXiv preprint arXiv:1906.00532, 2019.

[15] H. You, Z. Sun, H. Shi, Z. Yu, Y. Zhao, Y. Zhang, C. Li, B. Li, and
Y. Lin, “Vitcod: Vision transformer acceleration via dedicated algorithm
and accelerator co-design,” in 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2023, pp.
273–286.

[16] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data
movement is all you need: A case study on optimizing transformers,”
Proceedings of Machine Learning and Systems, vol. 3, pp. 711–732,
2021.

[17] A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and
F. Wang, “Hvac: Removing i/o bottleneck for large-scale deep learn-
ing applications,” in 2022 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2022, pp. 324–335.

[18] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and
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